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ABSTRACT

Accurate yield estimation has always been a matter of challenge to the scientific community especially
so in the recent times due to the heightened risk of climatic variability. This study explored the
statistical technique of fixed effect panel regression for estimation of the district-wise wheat yield using
weather as well as satellite remote sensing indices. As wheat crop is sensitive to heat, extreme
temperature during the reproductive stage was used for modelling. Along with that trend adjusted
vegetation condition index (VCITadj), temperature condition index (TCI) and vegetation health index
(VHI) during the thermo-sensitive reproductive phase (TSP) was also used for modelling of wheat
yield. The results show that, models developed with extreme temperature and remote sensing indices
could capture the broad variation in district-wise wheat yield. The error was higher for extreme
temperature based model as compared to the remote sensing based models. Among the remote sensing
based models, VHI based one outperformed both the TCI and VCITadj based models which may be due to
the reason that VHI combines both the information about greenness as well as temperature stress in it.
The error in estimated yield varied based on the model but it was below 10% for all the districts for VHI
based model. Further, it was seen that the accuracy was good for first year of prediction but it decreases
for the second year. It indicates that the model should be used in a rolling mode, updating the parameters
in each year before using it for next year.

Key words: Wheat yield modelling, Extreme temperature, Trend adjusted vegetation condition index,
Vegetation heath index

aggravated the risk. It is reported that, globally,
almost one third of the observed yield variability
is governed by climate variability which even
goes up to 60% for major breadbaskets of the
world (Ray et al., 2015). Climate change effects
have become widespread and even getting
strongly felt due to the impacts of the extremes
resulted from climatic variability (Klein Tank et
al., 2006). Temperature is undoubtedly the most
important weather variable but its extremes have
much larger ramifications due to its widespread
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Introduction

The accurate estimation of yield is essential
for many purposes starting from planning at the
country or regional scale to loss estimation at very
local scales. Though Indian agriculture is very
prone to the factors ranging from weak rural
infrastructure, uncertainties in yields and prices
but recently climate variability and change has
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impact on different sectors starting from
environment, agriculture, livestock and above all,
the lives of human being (Azhar et al., 2014).
Extreme temperatures often influence the
physiological mechanisms of plants through
influencing their transpiration rate, stomata
opening and closing mechanisms, photosynthesis,
respiration rate (Ayeneh et al., 2002) and if
coincided with the reproductive phase, may lead
to severe damage of reproductive organs like
pollen grains (Saini and Aspinall, 1982)
hampering grain setting and its filling (Wardlaw
and Moncur, 1995), leading to early senescence
(Lobell et al., 2012; Duncan et al., 2015), ulti-
mately incurring economic losses to farmers.
Klein Tank et al. (2006) has shown that the warm
days are increasing at a very sharper rate over the
central and southern Asia, including India.

Though all crops are affected by the climatic
variability but there remains a large variation in
their specific sensitivity. Ray et al. (2015) found
that yield variability of 79% of wheat harvesting
region was explained by climate variability while
it was 70%, 67% and 53% for maize, soybean
and rice respectively indicating wheat is more
vulnerable crop compared to others. Wheat, the
most important support to the food security over
the globe, which is harvested in more than 220 M
ha of land and with over 700 Mt of production
(FAO), also remains at the centre of the dis-
cussion due to its sensitivity to the heat (Duncan
et al., 2015; Lobell et al., 2012). Wheat is a cool
temperature loving crop and it is sensitive to heat
especially during its reproductive growth stage
(Tashiro and Wardlaw 1989). It has become quite
common world over where the crop is grown
being affected by extreme high temperature events
incurring penalty in the form of yield loss (Asseng
et al., 2015; Liu et al., 2016; Lobell et al., 2012).

Considering the importance of climatic
variables on crop yield, it becomes imperative to
understand the quantitative relationship between
the two. These relationships are usually explored
in two ways, statistical models based on regre-
ssion (Lobell and Burke, 2009; Lobell et al.,
2012; Duncan et al., 2015) and using process
based crop simulation models (Asseng et al.,

2015). The statistical models are developed using
the statistical relationship between historical data
of crop production and weather parameters. There
are three common types of techniques for
statistical modelling in the literature: solely based
on time series data of a single point or area (time
series methods), based on time and space
variations (panel methods), and based only on
variations in space (cross-section methods). Time-
series models are having advantages for capturing
the behaviour of a specific area. In case of panel
and cross-section methods common parameter
values are assumed for all locations. But
particularly the cross-section methods are prone
to errors from omitted variables such as soil
parameters, fertilizer inputs etc. which have large
spatial variability. On the other hand, time-series
models are often data limited whereas panel and
cross-section methods can aggregate data from
multiple sites (Lobell and Burke, 2009). There
are several advantages of the statistical models
like limited dependence on data for field
calibration, and assessment of model uncertainties
in a transparent manner (Lobell and Burke, 2009).
As for example, if a model is unable to properly
represent crop yield responses to climate, it will
be reflected by the low value of coefficient of
determination (R2) between the modelled and
observed variables, as well as the confidence
interval around model coefficients and predictions
will be large. Although process-based models
could in theory be accompanied with similar
statistics, in practice they rarely are.

On the other hand, now a days, satellite image
is increasingly being used for different
applications in the agricultural sector. The change
in green biomass of the crops within the duration
of crop growth cycle has been successfully
investigated using Normalized Difference Vege-
tation Index (NDVI). The satellite-based vege-
tation health (VH) indices, which include the
vegetation condition index (VCI), the temperature
condition index (TCI) and the vegetation health
index (VHI) (Kogan, 1990; Unganai and Kogan,
1998; Kogan et al., 2016), have been developed
which not only overcome the limitations of NDVI
for large area spatial applications but also
segregates the effect of weather and ecosystem in
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it. The VCI concept was designed to extract the
weather component from NDVI values (Kogan,
1990). Hence, this study was structured with two
main objectives firstly, to model the district-wise
wheat yield based on extreme temperature and
secondly, models were developed using different
satellite remote sensing based vegetation health
indices. Further the developed models were
compared using different statistical techniques.

Material and Methods

Datasets

The high resolution daily gridded temperature
data developed by India Meteorological
Department (IMD) was used for the analysis.
Maximum (day) and minimum (night) tempe-
rature from 395 quality controlled station was
used by IMD for developing the data set
(Srivastava et al., 2009). Interpolation of the
station temperature data into 1° latitude × 1°
longitude grids was carried out using a modified
version of the Shepard’s angular distance
weighting algorithm. The developers of the
dataset have compared it with high resolution
datasets before successfully applying it for
deriving temperature related parameters such as
cold and heat waves, temperature anomalies over
India (Srivastava et al., 2009; Ratnam et al.,
2016).

National Oceanic and Atmospheric Adminis-
tration’s (NOAA) Centre for Satellite Applications
and Research (STAR) have developed Global and
Regional Vegetation Health (VH) which is a
NOAA/NESDIS system estimating vegetation
health, moisture condition, thermal condition and
their products. It contains Vegetation Health
Indices (VHI) derived from the radiance observed
by the Advanced Very High Resolution Radio-
meter (AVHRR) onboard afternoon polar-orbiting
satellites: the NOAA-7, 9, 11, 14, 16, 18 and 19
and VIIRS from Soumi-NPP satellite. Jiang et al.
(2008) have employed the adjusted cumulative
distribution function (ACDF) method based
algorithm to rectify the discontinuities and biases
in the time series of global smoothed NDVI
(SMN) due to sensor degradation, orbital drift

[equator crossing time (ECT)], and differences
from instrument to instrument in band response
functions. The System contains the following
vegetation health indices and products: No noise
Normalized Difference Vegetation Index (SMN),
No noise Brightness Temperature (SMT), Vege-
tation Condition index (VCI), Temperature
Condition index (TCI), Vegetation Health index
(VHI), Soil Saturation index (SSI), Fire risk index
(FRI); products - Drought, Malaria, Vegetation
health, Ecosystems, Land sensitivity to ENSO.

This study utilized the district level area,
production and yield data of wheat crop from
three major wheat growing districts of Rajasthan
namely Ganganagar, Hanuamagarh and Alwar.
The datasets available at the website of
Directorate of Economics and Statistics, Depart-
ment of Agriculture, Cooperation and Farmers
Welfare, Ministry of Agriculture and Farmers
Welfare, Government of India is used. In case of
Ganganagar and Alwar districts, the yield time
series was of 33 years (1982-83 to 2015-16) while
for Hanumangarh district it was of 21 years
duration (1995-96 to 2015-16).

Processing of the datasets

Extreme day temperature was calculated from
the time series of daily maximum temperatures
for each gird. Extreme temperatures were
regarded as the values which fall above the 90th

percentile for a particular day and location/grid
as described by the Expert Team for Climate
Change Detection and Indices (Klein Tank et al.,
2009; Sen Roy, 2009; Seneviratne et al., 2014).
Extreme warm days (ExWD) were considered as
those days which are above the 90th percentile
threshold value of the reference period, i.e. 1961-
1992.

The open source software TIMESAT was
used to estimate the vegetation phenology for the
study area using time series of NDVI (Jonsson
and Eklundh 2002; Jönsson and Eklundh 2003,
2004). The NDVI time series of both the products
was fitted with Savitzky- Golay (SG) (Sehgal et
al., 2011; Chakraborty et al., 2014) to each time
series on a pixel to pixel basis with an adaptive
upper envelope to account for negatively biased
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noise such as cloud. The details can be found in
Chakraborty et al., (2018). From the processed
NDVI profile we defined start of the season (SOS)
in each year as the point when the fitted curve
reaches 10% of its maximum amplitude for that
year (Lobell et al., 2012); end of the seasons
(EOS) is defined as the equivalent point on the
declining portion of the function. Length of the
season (LOS) was computed for each year as the
number of days between SOS and EOS.

The period of maximum NDVI/EVI has been
shown to correspond to heading date in cereal
crops (Sakamoto et al., 2005). In terms of the
satellite derived phenology matrices it corres-
ponds to the mid of the season (MOS). Teixeira
et al. (2013) found that a 30 day period around
the reproductive crop development phase
represented the thermo-sensitive period (TSP) and
captured extreme heat impacts on crop yield. A
30 day period post MOS was taken to represent
the TSP (Duncan et al., 2015). A cumulative sum
or integration of vegetation index (VI) values
(IntNDVITSP) and maximum VI values are used
commonly as surrogate measures of vegetation
productivity and crop yield (Rembold et al., 2013;
Duncan et al., 2015). The time integrated NDVI
was computed for the duration of TSP in each
pixel using the phenology derived MOS. The
dominating MOS among the pixels of a district
was considered as the district-wise MOS.

Trend adjusted VCI (VCITadj) which is
calculated after detrending/normalizing the NDVI
time series i.e. removing the technology compo-
nent, has been found to be more effective (Dhakar
et al., 2013). In this study we have used VCITadj,
Temperature condition index (TCI) which is
described by Unganai and Kogan (1998) and
Vegetation Health Index (VHI) (Kogan et al.,
2016). VHI was calculated as:

VHI = a × VCITadj + (1 – a) × TCI …(1)

where “a” is a coefficient quantifying a share of
VCITadj and TCI contribution in the VHI. Since
this share is generally not known for a specific
location and time of the year, it is assumed that
VCI and TCI contributions are equal (a=0.5). But
in this study we had the district-wise value of

VCI, TCI and the de-trended yield time series.
Hence, we have varied the value of “a” parameter
of the above equation from 0.1 to 0.9 to generate
different VHI value. These values were then
correlated with the de-trended district yields.
Based on the maximum coefficient of determi-
nation between the relationship of de-trended
district level yield and VHI, the value of “a”
parameter was found to be 0.7 for the Ganganagar
and Hanumangarh districts and 0.6 for Alwar
district.

Statistical modelling of yield

The identification of proper effects of weather
in time series datasets of yield also needs to
account for the impacts of other factors especially
if they are not correlated to the weather variables
(Lobell et al., 2011). As in the time series data of
yield generally there is presence of positive trend
which needs to be normalized before under-
standing impact of any factor on yield; otherwise
the relation may be biased due to the common
trends. But many a times it is also better to
include the time trend in the model itself (Lobell
and Burke, 2009). Here, in the regression we have
included district-specific quadratic time trends.
Hence the model estimates for weather effects
rely on year-to-year variations in weather and
yields, and not common trends. In some cases,
districts do exhibited highly nonlinear trends, with
sudden jumps in the data, which means that a
quadratic time trend would poorly fit the data.
We have used a model similar to that of Lobell et
al. (2011) as given below:

Yi,t = ci + b1t * year + b2t * year2 + d1i * year +
d2i * year + β.Xi,t + εi,t …(2)

Where, Ci is a district fixed effect, b1t is the linear
time trend, b2t is the quadratic time trend, d1i is
the district -specific linear time trend, d2i is the
district specific quadratic time trend, ® is a vector
of coefficients and X is a vector of variables. The
fixed effects model has the advantage of accoun-
ting for time-invariant country differences (e.g.
irrigation facility, soil quality, specific manage-
ment practices etc.), thereby removing biases due
to the omitted variables. The district-specific time
trends also capture differential rates of progress
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among them. In panel models, fixed effects (i.e.
district-wise dummy variables) were used to
control those variables which are not included in
the regression models and which can explain the
differences among the locations. This is a crucial
advantage over the cross-sectional regression
models (Lobell et al., 2011).

Software used

All the analysis and mapping was carried out
using open source R software and it’s IDE R-
Studio (R Core Team, 2017; R Studio Team,
2015). We have used the “Raster” package for
handling all the raster datasets of temperature,
rainfall as well as satellite remote sensing datasets
(Hijmans, 2015). The “plm” package was used
for panel regression.

Results and Discussion

The district wise yield was modelled using
panel regression with fixed effects. The fixed
effect was assigned at district scale. The model
was developed using extreme warm days as well
as different remote sensing derived vegetation
indices (VCITadj, TCI and VHI) as independent
variables. It can be seen that all the four variables
could capture the broad variation in district level
wheat yield over time (Table 1 and Figures 1, 2,

3). Though the value of coefficient of determi-
nation is very high and almost similar for all the
four variables, but the value of residual standard
error show the difference among the models for
different districts. The residual standard error
value for the model of extreme temperature is
0.30 while it is 0.23, 0.25 and 0.19 for VCITadj,
TCI and VHI based models, respectively. Though
the F-statistic is significant for all the models
indicating that all the selected variables could
capture the yield variation, but its value also show
the strength of the model. The results of root mean
square error (RMSE) and normalized RMSE are
also shown in table 1. The RMSE of wheat yield
for Ganganagar, Hanumangarh and Alwar districts
are 0.30 (nRMSE: 0.10), 0.19 (nRMSE: 0.06) and
0.31 (nRMSE: 0.10), respectively for extreme
temperature based model. For VCITadj based model
the RMSE are 0.24 (nRMSE: 0.08), 0.17
(nRMSE: 0.05) and 0.21 (nRMSE: 0.07) corres-
ponding to Ganganagar, Hanumangarh and Alwar
districts. For VHI based model the RMSE are
0.21 (nRMSE: 0.07), 0.12 (nRMSE: 0.04) and
0.18 (nRMSE: 0.07) for the three districts. Almost
in all the cases the RMSE and nRMSE was higher
for TCI based models. If we consider all the
districts together, the RMSE for different models
are 0.28 (nRMSE: 0.094), 0.21 (nRMSE: 0.07),
0.23 (nRMSE: 0.08) and 0.18 (nRMSE: 0.06) for

Table 1. Statistical parameters of the panel regression model for wheat yield using different variables for three
districts of Rajasthan

Parameters Extreme VCI TCI VHI
temperature

Residual standard error 0.30 0.23 0.25 0.19
Multiple R-squared 0.9914 0.9952 0.994 0.9966
Adjusted R-squared 0.9903 0.9946 0.9933 0.9962
F-statistic 892*** 1591*** 1285*** 2278***
Overall RMSE RMSE 0.28 0.21 0.23 0.18

nRMSE 0.094 0.07 0.08 0.06
Ganganagar RMSE 0.30 0.24 0.30 0.21

nRMSE 0.10 0.08 0.10 0.07
Hanumangarh RMSE 0.19 0.17 0.19 0.12

nRMSE 0.06 0.05 0.06 0.04
Alwar RMSE 0.31 0.21 0.19 0.18

nRMSE 0.10 0.07 0.06 0.07

*** indicates significant at p<0.01
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Fig. 1. Panel regression yield models for three districts of Rajasthan using extreme warm days as independent
variable

extreme temperature, VCITadj, TCI and VHI based
model respectively. The residual standard error,
RMSE and nRMSE values indicates that among
the remote sensing derived vegetation indices
based models, VCITadj and VHI performed is better
as compared to TCI. So, TCI was dropped from
further analysis. The F-statistic supplemented the
same results.

To test the performance of the models we
estimated the yield using the models for two
cases: a) yield was estimated for only the last
year while rest of the time-series was used for
model development, and b) yield was estimated
for last two years while rest of the time-series
was used for model development. The model
fitting and estimation of yield using extreme
warm days are presented in figure 1 and table 2.
It can be seen from the figure that the model
could capture broad variation of district-wise
yield over time. But for Ganganagar and Alwar
districts many a time the model was unable
capture the observed changes in yield especially
in the 1990s. Though for Hanumangarh district,

Table 2. Performance of the panel regression model
for yield estimation for the last two years of
the time series using the extreme warm days
as independent variable

District Year                   Error (%)
Last one Last two

year years

Ganganagar 2014 – 4.8
2015 15.6 16.9

Hanuamangarh 2014 – 11.7
2015 7.5 12.6

Alwar 2014 – 5.1
2015 19.1 20.8

the model captured the variability in a better way.
The error (%) in yield estimation when only the
last year was estimated were 15.6, 7.5 and 19.1
for Ganganagar, Hanumangarh and Alwar
districts, respectively. When yield was estimated
for last two years, for the first year of this two
year, the error (%) were 4.8, 11.7 and 5.1 for
Ganganagar, Hanumangarh and Alwar districts,
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Fig. 2. Panel regression yield models for three districts of Rajasthan using VCITadj as independent variable

respectively, which increased to 16.9, 12.6 and
20.8, respectively during the second year.

The models for estimation of yield using two
remote sensing based indices i.e. VCITadj and VHI
are presented in figures 2 and 3 and tables 3 and
4, respectively. These models could also capture
the broad variations in district yield over time.
Both the models could capture the inter-year yield
variability. These models even could clearly
capture the large decrease in yield in years 1994
and 2010 for Ganganagar district, in 1987 and
1994 for Alwar and 2001 and 2004 for
Hanumangarh district. It is clear from the figure
3 and table 4 that VHI could capture the variation
in a much better way as compared to the VCITadj

for all the three selected districts. The error (%)
in yield estimation using VCITadj when only the
last year was estimated were 9.3, 2.9 and 11.8 for
Ganganagar, Hanumangarh and Alwar districts,
respectively which were 7.4, 0.9, 6.4 for VHI
index based model. For VCITadj based model,
when yield was estimated for last two years, for
the first year of this two year, the error (%) were
4.1, 5.0 and 4.8 for Ganganagar, Hanumangarh

Table 3. Performance of the panel regression model
for yield estimation for the last two years of
the time series using VCI as independent
variable

District Year                   Error (%)
Last one Last two

year years

Ganganagar 2014 – 4.1
2015 9.3 8.2

Hanuamangarh 2014 – 5.0
2015 2.9 5.2

Alwar 2014 – 4.8
2015 11.8 10.4

and Alwar districts, respectively, which increased
to 8.2, 5.2 and 10.4, respectively.

The accurate estimation of yield loss is
essential for many purposes. Here, statistical
modelling approach was implemented to estimate
the crop yield using panel regression for district
scale. District-wise fixed effect panel regression
model was used for estimation of wheat crop
yield. Both the weather (extreme warm days) and
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Fig. 3. Panel regression yield models for three districts of Rajasthan using VHI as independent variable

Table 4. Performance of the panel regression model
for yield estimation for the last two years of
the time series using VHI as independent
variable

District Year                   Error (%)
Last one Last two

year years

Ganganagar 2014 – 4.3
2015 7.4 6.0

Hanuamangarh 2014 – 3.4
2015 0.9 2.3

Alwar 2014 – 5.8
2015 6.4 4.3

remote sensing variables (VCITadj, TCI and VHI)
could capture the broad variation in crop yield
from year to year. As the time series of yield is
having trend, indicating increase in yield over
time, the incorporation of linear as well as
quadratic time trend factor in the model improved
the performance of the model (Lobell et al.,
2011). Even though all the models using the
weather as well as the remote sensing variables

show high coefficient of determination for
explaining the district-wise wheat yield time
series, but based on F-statistic and residual
standard error, remote sensing variables were
found to be more effective as compared to the
weather variable. Further the RMSE and
normalized RMSE values for these models
established closeness of their predicted yield with
the reported yield. Though among the remote
sensing derived indices, there were variations, the
performance of VHI based model was much better
as compared to the VCITadj and TCI based models.
It may be due to the fact that the VHI index is a
combined index designed from VCITadj and TCI
thus encompassing both information about the
crop growth (NDVI) and temperature, making it
more holistic. Singh et al. (2004) used RVI and
NDVI index individually as well as in
combination to estimate the Rohtak district wheat
yield for 1997-98 using linear regression model.
They have reported significant improvement in
the performance of the model when both the
indices were used in the one model. Though both
these indices are only related to the crop growth
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still there was substantial improvement in yield
model. The indices used in this study (VCITadj

and TCI) were especially designed to capture the
effect of weather component in the crop growth
(Kogan, 1990). The error in estimated yield varied
based on the model but it was below 10% for all
the districts for VHI based model. Further, it was
seen that the accuracy was good for first year of
prediction but it decreases for the second year. It
indicates that the model should be used in a
rolling mode, updating the parameters in each
year before using it for next year.

Conclusions

This study explains statistical yield models
for wheat crop in three districts of Rajasthan using
different weather and remote sensing variables.
As wheat is a heat sensitive crop especially during
the reproductive stage, the models were developed
considering this period using the extreme warm
days and remote sensing based indices (VCITadj,
TCI and VHI). The district-wise fixed effect panel
regression based model developed using the
extreme warm days as well as remote sensing
indices could capture the broad variation in the
district wise wheat yield. The error was higher
for extreme warm days based model, followed by
TCI, VCITadj and it was minimum for VHI based
model. As VHI combines the information from
VCITadj and TCI i.e. both the crop growth/
greenness (NDVI) as well as temperature, hence
it could capture the condition in a better way.
Overall for VHI based index the error in estimated
yield was less than 10%. Further updating of the
model parameters in each year was found to yield
better results for prediction in the next year.
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